

J-W POWER COMPANY



IC Engine NESHAP - GCA Comments to EPA - Part 3 of 3

#### **Discussion** Points

- Reconstruction Calculation Methodology for NSPS (JJJJ)
- Compressor Blowdown Model
- Emissions Guidance Document
- Engine Emissions Applicability Flow Chart

## Reconstruction Guidance and Calculation Method

- Regulatory Issues / Reconstruction Basics
- The "Facility"
- GCA Guidance Document
- Example Calculation
- Summary

#### "Reconstructed" Units are subject to 40 CFR 60 Subpart JJJJ

• "Reconstruction" is defined in 40 CFR 60.15

 Section 60.15 of the New Source Performance Standards (NSPS) specifies that reconstruction occurs if the <u>fixed capital</u> <u>cost</u> of the new components exceeds 50% of the <u>fixed capital</u> <u>cost</u> of a <u>comparable entirely new facility</u>

• The December 16, 1975 preamble to the reconstruction regulations defines <u>fixed capital cost</u> as the capital needed to provide all the depreciable components, including the costs of engineering, purchase and installation of major process equipment, contractor fees, instrumentation, auxiliary facilities, building and structures

#### Facility is Reconstructed if...

Cost of New Components (overhaul \$'s) >50%

Cost of Comparable Entirely New Facility

#### Facility is Reconstructed if...

Cost of New Components (overhaul \$'s) Cost of Comparable Entirely New Facility >50%

Sounds easy enough...just add up the overhaul cost and divide by the cost of the Comparable Entirely New Facility

#### What is the Facility???



## **Definition of Facility**

- The individual components to be included in the calculation are restricted to those depreciable components that are part of the affected facility as defined in the relevant subpart (JJJJ in our case).
- Subpart JJJJ does not define the affected facility!
- Assumption: the affected facility is limited to the engine itself <u>and</u> the ancillary components necessary for it to run

## Definition of Facility (Cont'd)

#### **Included in Facility**

- Engine
- Ancillary Equipment necessary for engine to run
  - Cooling
  - Fuel/Start System
  - Oil System
  - Skid (foundation)
  - Controls (not emissions controls unless necessary for engine to run)

#### **NOT included in Facility**

- Driven Equipment (compressor)
- Process equipment not related to engine (gas piping, scrubbers, relief valves)
- Monitoring Equipment
- Buildings

Note: Some Components service both the engine and the driven equipment

#### "Reconstructed" Units are subject to 40 CFR 60 Subpart JJJJ

• "Reconstruction" is defined in 40 CFR 60.15

 Section 60.15 of the New Source Performance Standards (NSPS) specifies that reconstruction occurs if the <u>fixed capital</u> <u>cost</u> of the new components exceeds 50% of the <u>fixed capital</u> <u>cost</u> of a <u>comparable entirely new facility</u>

• The December 16, 1975 preamble to the reconstruction regulations defines <u>fixed capital cost</u> as the capital needed to provide all the depreciable components, including the costs of engineering, purchase and installation of major process equipment, contractor fees, instrumentation, auxiliary facilities, building and structures





#### **Final Assembly**

- Install ladders, tanks, catalyst elements, and exhaust system components
- Install separable coolers
- Commission Engine



## GCA Guidance Document

#### <u>Link</u>

- Define the Facility
- Pro-rating components that service both engine and driven equipment (cooler, skid)
- Define basis for pricing
- Factors to use for ancillary items and installation/start up/commissioning on a \$/horsepower basis.
- What to include for various types of overhauls

| Table 3 – Summary of fa | actors for estimating Ancillar                           | y Items and Installation, Start-                 |
|-------------------------|----------------------------------------------------------|--------------------------------------------------|
|                         | up and Commissioning Co                                  | ost                                              |
| Horsepower Range        | Ancillary Items (\$/HP)                                  | Installation Costs (\$/HP)                       |
|                         | <ul> <li>Cooling system</li> </ul>                       | <ul> <li>Trucking</li> </ul>                     |
|                         | Skid                                                     | <ul> <li>Cranes</li> </ul>                       |
|                         | <ul> <li>Fuel/Start system</li> </ul>                    | <ul> <li>Hookup Labor &amp; Parts</li> </ul>     |
|                         | <ul> <li>Controls (except</li> </ul>                     | <ul> <li>Commissioning</li> </ul>                |
|                         | emissions controls)                                      | <ul> <li>Emissions testing</li> </ul>            |
|                         | <ul> <li>Labor to package</li> </ul>                     | <ul> <li>Connection of Fuel and start</li> </ul> |
|                         | <ul> <li>Oil system</li> </ul>                           | gas                                              |
|                         | Note: above pro-rated for<br>engine related portion only | Note: above pro-rated for engine portion only    |
| Under 100 HP            | \$231 per horsepower                                     | \$48 per horsepower                              |
| 100 to 199 HP           | \$169 per horsepower                                     | \$43 per horsepower                              |
| 200 to 499 HP           | \$117 per horsepower                                     | \$21 per horsepower                              |
| 500 to 999 HP           | \$114 per horsepower                                     | \$15 per horsepower                              |
| 1000 to 1750 HP         | \$78 per horsepower                                      | \$11 per horsepower                              |
|                         |                                                          |                                                  |

#### **Reconstruction analysis using GCA Method**



#### Result: Engine is below reconstruction criteria

| Numerator = Engine Overhaul Costs                                                                                              |                          | Cost      |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------|
| Engine Repair parts & labor                                                                                                    |                          | \$55,100  |
| Trucking & Lifting Services                                                                                                    |                          | \$675     |
| Commissioning & Startup Labor                                                                                                  |                          | \$3,200   |
| Other                                                                                                                          |                          | \$0       |
| Total Numerator                                                                                                                |                          | \$58,975  |
| Component                                                                                                                      | Method Used              | Cost      |
| Component                                                                                                                      | Method Used              | Cost      |
| New OEM Engine Cost at time of overhaul:                                                                                       | Quote - identical engine | \$85,000  |
| Ancillary Items (use either method 1 or 2)<br>1: Generic Factors> \$46,800<br>2: Model Specific> \$0                           | Generic Factors          | \$46,800  |
| Installation, start-up and commissioning (use either method 1<br>or 2)<br>1: Generic Factors> \$8,400<br>2: Case Specific> \$0 | Generic Factors          | \$8,400   |
| Sub-total Ancillary and Installation adders prior to PPI adju                                                                  | istment                  | \$55,200  |
| PPI Adjustment on Ancillary and Installation adders                                                                            |                          | 100%      |
| Ancillary and Installation adders after PPI adjustment                                                                         |                          | \$55,200  |
| Total Denominator (Engine cost plus PPI adjusted                                                                               | Ancillary/Install)       | \$140,200 |

| pro-rated for engine related<br>portion only | Estimated New Cost | % Engine<br>related | Engine Ancillary Adder Costs<br>(New x CGA Pro-rated %) |
|----------------------------------------------|--------------------|---------------------|---------------------------------------------------------|
| Engine Ancillary System<br>Adders:           |                    |                     |                                                         |
| Skid                                         | \$0                | 0%                  | \$0                                                     |
| Engine Cooler                                | \$0                | 0%                  | \$0                                                     |
| Control Panel &<br>Wiring/Tubing             | \$0                | 0.0%                | \$0                                                     |
| Fuel, Starter,<br>Exhaust & Oil Systems      | \$0                | 0%                  | \$0                                                     |
| Packaging Labor                              | \$0                | 0%                  | \$0                                                     |

| New Package Installation<br>Adders: | Estimated New Cost | % Engine<br>related | Engine Installation, start-up and commissioning Costs |
|-------------------------------------|--------------------|---------------------|-------------------------------------------------------|
| Trucking                            | \$0                | 25%                 | \$0                                                   |
| Cranes                              | \$0                | 25%                 | \$0                                                   |
| Hookup Labor & Parts                | \$0                | 25%                 | \$0                                                   |
| Commissioning Labor                 | \$0                | 100%                | \$0                                                   |
| Fuel/Start gas Reconnection         | \$0                | 100%                | \$0                                                   |
| Emissions Testing                   | \$0                | 100%                | \$0                                                   |

| Haib & as Beatach &                                         |                                          |                    |                        |             |           |
|-------------------------------------------------------------|------------------------------------------|--------------------|------------------------|-------------|-----------|
| 4 Dalou - Angled +                                          | 1234                                     |                    | Date of                | Overhaul    | 1/23/2009 |
|                                                             |                                          |                    |                        |             |           |
| Engine & Package Informati<br>natural gas RICE. Old S/N = ( | on: 3 Stage recipro<br>5432, new S/N 228 | ocating corr<br>8. | ipressor package driv  | ven by a AC | ME 400 HP |
| Horsepower @ RPM                                            | 400                                      | @ dH               | 180                    | 0 RPM       |           |
| ype of Overhaul                                             | Engine replacement                       |                    |                        | Choose fro  | ym Menu   |
| Cost Calculation:                                           |                                          |                    | Engine Overhaul Cost   |             |           |
| Existing versus New                                         |                                          | Comp               | arable Entirely New Fa | cility      |           |
| Numerator - engine                                          | repair, trucking, cram                   | e & startup k      | ibor costs included.   |             |           |
| Denominator = New                                           | Engine + Ancillary + S                   | ite installatio    | n & Startup            |             |           |
| Actual Cost Calculation:<br>Dverhaul versus New             | \$58,975                                 | /                  | \$140,200              | H           | 42.1%     |
| Result: En                                                  | gine is be                               | low r              | econstruct             | ion cr      | iteria    |
| Numerator = Engine Ove                                      | erhaul Costs                             |                    | - 75 V C 1             |             | Cost      |
| ngine Repair parts & labor                                  |                                          |                    |                        |             | \$55,100  |
| rucking & Liftling Services                                 |                                          |                    |                        |             | \$675     |
| ommissioning & Startup Labor                                |                                          |                    |                        |             | \$3,200   |
| Ather                                                       |                                          |                    |                        |             | 95        |
| Cotal Numerator                                             |                                          |                    |                        |             | \$58.975  |

| Denominator = Comparable New Facility<br>Notes:                                                                             |                          |           |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------|
| Component                                                                                                                   | Method Used              | Cost      |
| New OEM Engine Cost at time of overhaul:                                                                                    | Quote - Identical engine | \$85,000  |
| Ancillary Items (use either method 1 or 2)<br>1: Generic Factors> \$46,800<br>2: Model Specific> \$0                        | Generic Factors          | \$46,800  |
| Installation, start-up and commissioning (use either metho<br>or 2)<br>1: Generic Factors> \$8,400<br>2: Case Specific> \$0 | d 1<br>Generic Factors   | \$8,400   |
| Sub-total Ancillary and Installation adders prior to PP<br>PPI Adjustment on Ancillary and Installation adders              | 1 adjustment             | \$55,200  |
| Ancillary and Installation adders after PPI adjustmen                                                                       |                          | \$55,200  |
| Total Denominator (Engine cost plus PPI adju                                                                                | sted Ancillary/Install)  | \$140,200 |

| Haib & as Beatach &                                         |                                          |                    |                        |             |           |
|-------------------------------------------------------------|------------------------------------------|--------------------|------------------------|-------------|-----------|
| 4 Dalou - Angled +                                          | 1234                                     |                    | Date of                | Overhaul    | 1/23/2009 |
|                                                             |                                          |                    |                        |             |           |
| Engine & Package Informati<br>natural gas RICE. Old S/N = ( | on: 3 Stage recipro<br>5432, new S/N 228 | ocating corr<br>8. | ipressor package driv  | ven by a AC | ME 400 HP |
| Horsepower @ RPM                                            | 400                                      | @ dH               | 180                    | 0 RPM       |           |
| ype of Overhaul                                             | Engine replacement                       |                    |                        | Choose fro  | ym Menu   |
| Cost Calculation:                                           |                                          |                    | Engine Overhaul Cost   |             |           |
| Existing versus New                                         |                                          | Comp               | arable Entirely New Fa | cility      |           |
| Numerator - engine                                          | repair, trucking, cram                   | e & startup k      | ibor costs included.   |             |           |
| Denominator = New                                           | Engine + Ancillary + S                   | ite installatio    | n & Startup            |             |           |
| Actual Cost Calculation:<br>Dverhaul versus New             | \$58,975                                 | /                  | \$140,200              | H           | 42.1%     |
| Result: En                                                  | gine is be                               | low r              | econstruct             | ion cr      | iteria    |
| Numerator = Engine Ove                                      | erhaul Costs                             |                    | - 75 V C 1             |             | Cost      |
| ngine Repair parts & labor                                  |                                          |                    |                        |             | \$55,100  |
| rucking & Liftling Services                                 |                                          |                    |                        |             | \$675     |
| ommissioning & Startup Labor                                |                                          |                    |                        |             | \$3,200   |
| Ather                                                       |                                          |                    |                        |             | 95        |
| Cotal Numerator                                             |                                          |                    |                        |             | \$58.975  |

#### Facility is Reconstructed if...

Cost of New Components (overhaul \$'s) >50% Cost of Comparable Entirely New Facility

## And new date of manufacture if...

Cost of New Components (overhaul \$'s) Cost of Comparable Entirely New Facility >75%

## Reconstruction Guidance Summary

- Facility is more than just the engine
- Ancillary items and installation should be accounted for in the cost of the facility
- The Gas Compressors Association (GCA) has developed guidelines to assist in estimating the facility.
- 2011 Regulation requires a new date of manufacture if cost ratio exceeds 75%
- Web based <u>tool</u> available soon!

#### References

- US EPA Applicability Determination Index
  - <u>http://cfpub.epa.gov/adi/</u>
  - Control # NB28 dated 11/25/86
  - Control # 0200048 dated 9/3/99
  - Control # 9800085 dated 5/11/98
  - Control # 9900057 dated 04/23/98
  - Control # 0800031 dated 2/28/08

# **Questions?** Pt.1

A copy of the GCA Calculation Methodology can be found at www.gascompressor.org



#### **Compressor Blowdown Model**

- Why do we have blowdowns
  - Maintenance
  - Starting
- Subpart W and TCEQ MSS
  - Greenhouse gas
  - Methane has CO2e of 21

#### **Compressor Blowdown Model**

- Comparison to TCEQ model
  - Regulatory Issues
  - Why it is important to be accurate
- Benefits of using the model
- ACF and SCF
- Calculation methodology and assumptions

#### **TCEQ Venting Emission Calculation**

- Uses overall pressure and temperature to determine gas volume
  - Due to the lack of instruction for the temp input, there could be variability in the model
  - Requires user to provide Actual Cubic Foot (ACF) volume
- Treats the unit as a single volume
  - Does not account for the majority of actual volume being at lower pressure
- Results in 2+ times greater predicted standard volume than detailed engineering calculations



![](_page_28_Figure_0.jpeg)

#### **GCA Blowdown Calculation**

- Larger horsepower=larger Actual Cubic Feet (ACF)
- Model uses horsepower and number of stages input by the user and a volume per horsepower ratio to conservatively determine ACF volume
- Surveyed packagers to get a typical representation of the fleet
- Data was gathered with ACF divided into streams
- The ACF number is worth its weight in gold due the vast differences from package to package

#### The Golden Nugget

![](_page_30_Figure_1.jpeg)

| Horsepower<br># Stages<br>Suction Pressure<br>Suction Temperature<br>Discharge Pressure<br>Ambient Temp<br>Elevation<br>Molecular Weight | 1380<br>2<br>75<br>60<br>1000<br>100<br>500<br>500<br>500 | (minimum 50)<br>(must be 1, 2<br>psig<br>F<br>psig<br>F<br>feet. Used to | , maximum<br>or 3)<br>calculate A | 2,400)<br>vg Atmo | oshperhic Pressure of: |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------|-------------------|------------------------|
| crubber Dimensions (o<br>ouction Scrubber Diame                                                                                          | ptional)<br>eter                                          | 1st<br>28                                                                | 2nd<br>18                         | 3rd               | inches                 |
| uction Scrubber Length<br>Number of Scrubbers pe                                                                                         | n s/s<br>er stage                                         | 83<br>0                                                                  | 70<br>0                           | 0                 | inches                 |
| Actual Cubic Feet<br>ndard Conditio                                                                                                      | SUC                                                       | 0                                                                        | 0                                 | 0                 |                        |
| Standard Pressure<br>Standard Temp                                                                                                       | 14.7                                                      | Ľ                                                                        |                                   |                   |                        |

## Theory

- The total volume is distributed to the various streams based on number of stages
- Scrubber sizes may be entered in order to produce a more accurate result, otherwise the volume will be distributed to the streams according to a percentage breakdown
- The interstage pressures and temperatures are then calculated using theoretical formulas and a slight weighting is given to early stages as is typical in practice
- Ambient temperatures provided by the user are used to calculate temperature after cooling using a 20 degree approach
- The SCF is calculated stream by stream and then summed
- This method assumes complete blowdown of the package to atmospheric pressure
- The SCF is converted to pounds and then to weight percent of VOC, Benzene and H2S to find pounds per event of each contaminant

#### Assumptions and Methodology

- Head volumes are added on scrubbers
- Packages less than 250 HP do not often include pulsation bottles and distribute volume differently
- Standard conditions come from Subpart W 14A calculations
- Packagers use standard engineering to design which allows for usable results

| Calculations       |           |         |              |           |           |  |
|--------------------|-----------|---------|--------------|-----------|-----------|--|
| Total Ratios       | 11.34     |         |              |           |           |  |
| Ratios per stage   | 3.37      |         |              |           |           |  |
| Ratio 1st stage    | 3.70      | 110%    | Shifts ratio | s towards | tst stage |  |
| Ratio 2nd stage    | 3.06      | 110%    | shifts ratio | s towards | 2nd stage |  |
| Ratio 3rd stage    | n/a       |         |              |           |           |  |
|                    |           |         |              |           |           |  |
| P&T Trails         | 3 St      | age     |              |           |           |  |
|                    | Pressure, |         | Actual       | Large     |           |  |
|                    | Psig      | Temp, F | cubic feet   | 2 stage   | SCF       |  |
| Suction Scrubber   | 75        | 60      | 41.90        | 31%       | 255       |  |
| Suction Other      | 75        | 60      | 14.50        | 11%       | 88        |  |
| Discharge 1        | 317       | 221     | 20.13        | 15%       | 346       |  |
| Suction 2 Scrubber | 317       | 120     | 19.71        | 14%       | 398       |  |
| Suction 2 Other    | 317       | 120     | 16.69        | 12%       | 337       |  |
| Discharge 2        | 1000      | 271     | 14.72        | 11%       | 723       |  |
| Suction 3 Scrubber | n/a       | n/a     | 0.00         | %0        | n/a       |  |
| Suction 3 Other    | n/a       | n/a     | 0.00         | %0        | n/a       |  |
| Discharge 3        | n/a       | n/a     | 0.00         | %0        | n/a       |  |
| Final Discharge    | 1000      | 120     | 8.96         | 7%        | 554       |  |
|                    |           |         |              |           |           |  |
| Total              |           |         | 136.62       | 100%      | 2702      |  |
| Pounds per Event   | 150.803   |         |              |           |           |  |

| Version # 14 | Total ACF | Total SCF | Tons per event | 38.968 pounds per event | 11.128 pounds per event | 0.000 pounds per event |       |  |
|--------------|-----------|-----------|----------------|-------------------------|-------------------------|------------------------|-------|--|
|              | 137       | 2702      | weight %       | 25.8%                   | 7.4%                    | 0.0%                   |       |  |
|              | Result:   |           |                | VOC                     | Benzene                 | H2S                    | 14.45 |  |

#### GCA model ACF prediction

- TCEQ requires ACF volume to be known, where the GCA model predicts ACF based on HP and number of stages saving time and money \$\$
- GCA predicts ACF volumes between 9% and 24% above engineering calculated ACF volume
- GCA model is less cumbersome to use
- Removes some potential for human error
- Provides a standard to compare against

#### SCF prediction GCA vs TCEQ

- GCA predicts SCF volume between 4% and 33% above engineering calculated volume
- TCEQ predicts SCF volume between 96% and 161% above engineering calculated volume
- The GCA model provides more accuracy while still being conservative
- State database may be used in future regulatory efforts and accuracy will increase rulemaking effectiveness.

#### Summary

- Both TCEQ and GCA models are conservative
- GCA model results in greater accuracy
- Mean Percent Error (MPE) for GCA model prediction of SCF is 14.37%
- MPE for TCEQ model prediction of SCF is 119.70%
- This could create permitting issues for operators by grossly over-predicting emissions
- Committee is meeting Wednesday to finalize model

## GCA Emissions Guidance Document

Gas Compressor Association

Summaries of Emissions Requirements

For

Natural Gas Fired Reciprocating Engines

Revision: 6 August 19, 2011

#### <u>Index:</u>

| EPA NSPS JUJ                             | -     |
|------------------------------------------|-------|
| EPA NSPS 0000                            | m     |
| EPA NESHAP 4                             | ব     |
| EPA NO2 NAAQS                            | ý     |
| EPA Greenhouse Gas (GHG) Reporting       | ~     |
| State of Texas<br>Permit By Rule (PB.R.) | ~~~~~ |
| State of Louisiana                       | œ     |
| State of Oklahoma. 20                    | 0     |
| State of New Mexico. 22                  | 5     |
| State of Wyoming                         | ব     |
| State of PENNSY LVANIA26                 | Q     |
| State of VIRGINIA. 31                    |       |
| State of OHIO 37                         | ~     |
| State of WEST VRGINIA                    | 5     |
| State of KENTUCKY                        | 7     |
| State of Arkansas                        | m     |
| State of Kansas                          | Q     |
| State of Colorado                        | 0     |
| Submission of Corrections                | 0     |

#### **EPA Applicability Flow Chart**

![](_page_41_Figure_1.jpeg)

# Thank You For Attending

![](_page_42_Picture_1.jpeg)