

Digital transformation of Oil & Gas and asset performance management

Digital transformation of industries and asset performance

May 2, 2017

Confidential. Not to be copied, reproduced, or distributed without prior approval.

CAUTION CONCERNING FORWARD-LOOKING STATEMENTS:

This document contains "forward-looking statements" – that is, statements related to future events that by their nature address matters that are, to different degrees, uncertain. For details on the uncertainties that may cause our actual future results to be materially different than those expressed in our forward-looking statements, see http://www.ge.com/investor-relations/disclaimer-caution-concerning-forwardlooking-statements as well as our annual reports on Form 10-K and quarterly reports on Form 10-Q. We do not undertake to update our forward-looking statements. This document also includes certain forward-looking projected financial information that is based on current estimates and forecasts. Actual results could differ materially. to total risk-weighted assets.]

NON-GAAP FINANCIAL MEASURES:

In this document, we sometimes use information derived from consolidated financial data but not presented in our financial statements prepared in accordance with U.S. generally accepted accounting principles (GAAP). Certain of these data are considered "non-GAAP financial measures" under the U.S. Securities and Exchange Commission rules. These non-GAAP financial measures supplement our GAAP disclosures and should not be considered an alternative to the GAAP measure. The reasons we use these non-GAAP financial measures and the reconciliations to their most directly comparable GAAP financial measures are posted to the investor relations section of our website at www.ge.com. [We use non-GAAP financial measures including the following:

• Operating earnings and EPS, which is earnings from continuing operations excluding non-servicerelated pension costs of our principal pension plans.

• GE Industrial operating & Verticals earnings and EPS, which is operating earnings of our industrial businesses and the GE Capital businesses that we expect to retain.

• GE Industrial & Verticals revenues, which is revenue of our industrial businesses and the GE Capital businesses that we expect to retain.

• Industrial segment organic revenue, which is the sum of revenue from all of our industrial segments less the effects of acquisitions/dispositions and currency exchange.

• Industrial segment organic operating profit, which is the sum of segment profit from all of our industrial segments less the effects of acquisitions/dispositions and currency exchange.

 Industrial cash flows from operating activities (Industrial CFOA), which is GE's cash flow from operating activities excluding dividends received from GE Capital.

• Capital ending net investment (ENI), excluding liquidity, which is a measure we use to measure the size of our Capital segment.

GE Capital Tier 1 Common ratio estimate is a ratio of equity

World Economic Forum

350 million tonnes of CO2e* emissions reduced

\$745B Value Digital Asset LCM

Beyond the Barrel

Integrated Customer Services

Estimated numbers. Source: Accenture research for the Digital Transformation of Industries Project White Peper

Internet Office

Digital Transformation Initiative Oil and Gas Industry

In collaboration with Accenture

\$945B

Industry Value

\$637B Societal Impact

\$170B Cost Savings for Customers

Software Is Impacting Every Industry

\$20ви

Hotel Service

The world's largest accommodation provider that owns no real-estate

\$18_{BN} Consumer App Economy

The world's largest consumer hardware company only creates a few apps

The world's largest taxi company that owns no vehicles

AIRBNB[™], APPLE[™], and UBER[™] and their respective logos are trademarks of their respective owners. * Estimated numbers. Source: Accenture research for the Digital Transformation of Industries Project

Digital Industrial In Full Force

Enabled Via Digitally Connected Asset Ecosystems

What Does It Mean To Be Digital Industrial?

"Digital DNA" Required					
Customer Ecosystems	We need to lead the change both from				
New Business Models	the bottom & the top				
Fast + Agile	Our employees want a digital company				
Fast + Agile Deep Digital Talent	Our employees want a digital company Digital is not a function, it's something				

Immersive + Pervasive...Enabling the digital thread

Transforming Industrial Operations

Asset Performance Management

Maximize performance and asset availability

Operations Optimization

Increase system efficiency across operations

Digital Twin/ Digital Thread

Optimize lifecycle of design, manufacturing, service, & repair cycles

Creating New Value

Improved operational performance and efficiency

1

New customer services and business models

Continuous innovation and faster time to market

Powerful Apps on a Powerful Platform

Asset Performance Management (APM)

	Machine & Eq Health	uipment 1	Re	eliability Managem	ent	Maintenai	nce Optimization
	Connecti	vity	Ρ	redictive Diagnosti	ics	Pei Ben	formance chmarking
Asset	Anomaly De	tection	No	tification Managen	nent	Asset Strateg	Maintenance gy/ Scenarios
Performance Management (APM)	Asset Condition Monitor		Case Management		Financially Optimized Asset Strategy		
Asset Manager Plant Manager Central Engineering	Data Work Bench		Response Management		Work Scoping & Prioritization		
	Analytics Work Bench		Knowledge Management		Inventory Optimization		
	Integrated IIoTPlatform						
	Cyber Security	Digital Tw	vins Mobility Co		ontrols IT Integration		

How is GE leading this in the gas compression space?

GE's Digital Industrial Journey

010122302	- Stell?					
-	-	under .				
		raine .		104		
1 10001 10	141	and Read	in mindel	-	-	44
- 1042 H	-	ebden	Surris .	1es.	1.0	-
1	ter heres		1			
11 88	No. 11		1			
11 80	-		1	1		1.
			1 1	1	N/A	260
14 84					ALC: 14 17 18	

OIL & GAS	POWER GENERATION	POWER DISTRIBUTION	WIND	WATER
 Maximize Production Predictive Maintenance Remote Collaboration Reduced Risk Environmental Control 	 Maximize Production Longer Repair Intervals Reduce Emissions Predictive Maintenance Longer Asset Life 	 Revenue Protection Meter Health Power Quality Load Forecasting Predictive Maintenance 	 Maximize Farm Power Wind Wake Protection Outage Detection Continuous Operation 	 Operational Integrity Minimize Water Use Control Emissions Minimize Cost
AVIATION	RAIL	HEALTHCARE	MANUFACTURING	MINING

Delivering customer value through **APM**

- Reduced Maintenance Costs... trip reduction via remote access, early issue detection and condition-based maintenance
- Increased Reliability... faster return to service and lower unplanned downtime
- Lower Operating Costs...
 centralized fleet-level access to
 data_mobility and automated

data, mobility and automated reporting

Implementation

Deploying an asset performance management system

Step 1. Data consolidation & asset visibility

- Stream package data
- Disposition downtime (e.g. planned vs unplanned)
- Transition from uptime to availability management

1-2%

INCREASED

AVAILABILITY

 Enable onsite/mobile field automation tools (iPad)

up to

12:14 PM 100% 🚳 PREDIX ≡ A Alerts 51 💼 Cases 📥 Analys Dashboard 6T1 6T2 1010 MW PERFORMANCE Target Capacity Output 1005 MW 930 mw 1010 MW Heat Rate 5600 вти Making decisions... simpler & faster

Step 2. Scheduled maintenance optimization

- Implement case management
- Integrate real-time notification services
- Advanced decision-making for capital expenses (pocket automation, piston mods, compressor bore changes, etc)
- Improved alignment and potential extension of PM intervals of plant assets

Making decisions in new ways to enable greater productivity

Step 3. Unplanned downtime reduction

- Case management system
- Continuous improvement processing
- Monitoring and diagnostics tooling and services
- Unscheduled/forced-outage downtime & callouts reduced through predictive analytics
- Active emissions optimization

The most advanced decision making... turning unplanned into planned

Customer value, case studies and analytics

Business Case in Gathering & Processing Value drivers: Productivity + maintenance cost Ψ + vol. flow \uparrow

Field Operator Productivity	Maintenance cost reduction	Volumetric Flow increase
Value prop: Remote asset visibility	Value prop: Maintenance extension analytic	Value prop: Flow optimization analytic
 Avg FO site visits/day: 10 – 20 Avg. visits/site: 1 per day Avg. distance btn sites: 15 miles Avg. # pkgs/site: 4 Avg. work-hours/day: 10 hrs Avg. FO rate: \$80/hr 	 Avg maint. cost/engine: \$90/hp/yr * Avg. engine hp: 900hp Avg. maint. cost/engine: \$81k/yr Compressor maint. Cost: \$27k/yr (1/3rd) * Total maint. Cost: \$108k/pkg/yr 	 Avg. engine hp: 900 Industry metric: 110hp/mmscfd * Customer margin: \$ 0.2/mmbtu Total margin/engine: \$ 500k/yr
Outcome: 1 site visit/week	 Outcome: 10% ♥in maint. cost 	 Outcome: 10% ↑in flow
 Savings: \$2.8k/pkg/yr 	 Savings: \$10.8k/pkg/yr 	 Addn. margin: \$50k/pkg/yr

Potential customer margin \uparrow per package: \$ 63.6k

Note: This is an illustrative example of potential value drivers and benefits

* Source: Spears & Associates, Inc.

Increasing Customer Value with Analytics...

¹ – Jenbacher Engine: Analytic based on exhaust gas temp. worst case piston failure scenario, 4 days to repair, excl. collateral damage ² – Waukesha Engine: Analytic based on ignition voltage, highly utilized gas compression unit, \$50K/hour revenue generated

Increasing Customer Value with Analytics...

Dashboard View

(With myPlant* powered	d by GE Power							💄 Alison Ma	ckey 🗸
Asset Details				🚱 User loca	l time [GMT-05:00	nj 🗸 🛛 🔅 imp	verial 🗸 🔚 🗸	? Need Assi	istance 🗸
Machine Overview Favori	tes			• Map view I F	Fleet reports 🗸	Fleet alarm	% Performan	ce 📰 Fleet an	nalytics 🗸
									Q
Region	Model	Status 🔸	Customer	Site	Engine ID	JNumber	Serial Number	Commissioning Date	
Filter	Filter	running	Filter	Filter	Filter	Filter	Filter	Filter	
Waukesha	W-Engine	RUNNING							$\stackrel{\sim}{\simeq}$
Waukesha	W-Engine	RUNNING							$\stackrel{\frown}{\simeq}$
Waukesha	W-Engine	RUNNING							$\stackrel{\frown}{\simeq}$
Waukesha	W-Engine	RUNNING							$\stackrel{\frown}{\simeq}$
Waukesha	W-Engine	RUNNING							$\stackrel{\frown}{\simeq}$
Waukesha	W-Engine	RUNNING							☆
Waukesha	W-Engine	RUNNING							☆
Waukesha	W-Engine	RUNNING							$\stackrel{\frown}{\simeq}$
Waukesha	W-Engine	RUNNING							☆
Waukesha	W-Engine	RUNNING							

Asset Detail View

Alarm View & eHelp

Show more alarms

Recent Alarms

Severity	Code (e-Help)	Description	Timestamp
WARNING	ALM-425	Rich Limit - Primary Right	18/04/2017 06:59:01.822
WARNING	ALM-343	Left Bank Oxygen Sensor	18/04/2017 08:58:01.791
WARNING	ALM-345	Right Bank Oxygen Sensor	18/04/2017 06:58:01.791
TRIP	ESD-222	Customer Emergency Shutdown	15/04/2017 00:38:31.202
TRIP	ESD-222	Customer Emergency Shutdown	15/04/2017 00:09:09.373
TRIP	ESD-222	Customer Emergency Shutdown	13/04/2017 21:53:07.390
TRIP	ESD-222	Customer Emergency Shutdown	13/04/2017 21:40:03.017
TRIP	ESD-222	Customer Emergency Shutdown	13/04/2017 21:34:57.873
TRIP	ESD-222	Customer Emergency Shutdown	13/04/2017 21:27:27.692
TRIP	ESD-222	Customer Emergency Shutdown	11/04/2017 13:20:11.258

ALM425	Rich Limit - Primary Right
Description .	
	ALM425 indicates that the primary right stepper position has reached the maximum number of steps indicated in the user defined "Stepper Position - Edit Max" table on the [F8] AFR Setup panel for the corresponding intake manifold air pressure value. The stepper is not allowed to travel to a richer position.
💌 Probable Ca	ISE
	 Poor fuel composition Incorrect programming Mechanical failure (carburetor, fuel pressure regulator, stepper, or oxygen sensor) Exhaust leaks Masked or faulty 02 sensor High exhaust backpressure Misfire Corburetor adjustment Throttle plate adjustment Incorrect fuel pressure to regulator
Troubleshooting	
ALM425 RICH LIMIT - PRIM	ARV RIGHT
	Click Here for Information on Using E-Help 🕧

Graph View

Diagnostic Workbench View

Imagination at work

